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Thermal Squeezed State Representation of Scalar
Field and Energy Density in Semiclassical
Theory of Gravity

P. K. Suresh1

The semiclassical theory of gravity is studied in terms of representation of scalar field
in thermal coherent state and thermal squeezed state formalisms. For the FRW cosmo-
logical model with a minimal scalar field, the semiclassical Einstein equation reduces
to zero-point energy term plus a finite temperature term and classical term in thermal
coherent state. In thermal squeezed vacuum state it reduces to quantum term in addition
to the finite temperature term and zero-point energy term. The present study can ac-
count for nonclassical state and finite temperature effect contributions to energy density
in semiclassical theory of gravity.

1. INTRODUCTION

The semiclassical theory of gravity has been developed as a methodology to
include some part of quantum effects into classical gravity. In this approach the
metric under consideration is treated classically and matter field quantum mechan-
ically as the source of gravity. In semiclassical theory left-hand side of Einstein
equation contain Einstein tensor (Gµν = Rµν − 1

2gµνR) and right-hand side is the
expectation value of suitably defined energy–momentum tensor (〈Tµν〉) for matter
field (Birrel and Davies, 1982). The matter field has been studied extensively over
the years in terms of real as well as complex scalar field. The interplay between the
field theory including finite temperature field theory and classical general relativity
has been widely discussed in different contexts in cosmology. Various represen-
tation schemes of scalar field have been introduced including coherent states and
squeezed states of quantum optics. The coherent state and squeezed state can play
a key role for several cosmological issues. Recently such representation of scalar
field received much attention in cosmology (Albrechtet al., 1994; Berger, 1981;
Brandenbergeret al., 1992, 1993; Gasperini and Giovannini, 1993; Grishcuk and
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Sidorov, 1990; Huet al., 1994; Kuo and Ford, 1993; Mataczet al., 1993; Suresh
et al., 1995; Suresh and Kuriakose, 1997, 1998). The finite temperature effects in
scalar field can play an important role in various contexts of cosmological prob-
lems at the same time the coherent states and squeezed states formalisms can also
play a vital role for many problems in cosmology. Therefore it is appropriate to
study the role of thermal coherent state and thermal squeezed state formalisms
in cosmology and may be much useful to deal with quantum effects and thermal
effects simultaneously in semiclassical theory of gravity.

In this paper we study the representation of free scalar field in thermal coherent
and thermal squeezed state formalisms. Then energy density for the minimally
coupled scalar field in semiclassical theory of gravity can be computed for a FRW
cosmological model.

2. THERMAL SQUEEZING AND SEMICLASSICAL THEORY

Consider a classical scalar field8(x, t) described by the action (we take
G = h = c = 1)

A =
∫ √−g d4x

[
1

2
∇ i8∇i8− V(8)

]
(1)

in Friedmann–Robertson–Walker spacetime with the metric

ds2 = dt2− S2(t)

[
dr

1− kr2
+ r 2(dθ2+ sin2 θ dϕ)

]
. (2)

Herek takes 1, 0, and−1 for a closed, flat, and open universe, respectively.
The classical Einstein equation is given by(

Ṡ

S

)2

+ k

S
= 8π

3

(
8̇2

2
+ V(8)

)
(3)

and the classical field equation is

1

S3

d

dt

[
S3 d8

dt

]
+ dV(8)

d8
= 0. (4)

In semiclassical quantum gravity Einstein equation is (Kim, 1997)(
Ṡ

S

)2

+ k

S
= 8π

3S3
〈Ĥ〉 (5)

and the time dependent Schrodinger equation for the matter field is given by

i
∂

∂t
9(8, t) = Ĥ9(8, t). (6)
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Where

Ĥ = 1

2S3
5̂2+ S3V(8̂). (7)

is the Hamiltoinan of the matter field.
Let us takeV as following form

V(8̂) = 1

2
m282. (8)

Now the scalar field can be represent in thermal squeezed states and thermal
coherent states and the semiclassical equation can be study in these formalisms.
The scalar field under consideration is minimally coupled to the gravity. The present
study confine attention to homogeneous modes of scalar field only. Again for the
sake of simplicity of study single mode of the scalar field only consider here. Now
for representing the scalar field in thermal squeezed state and thermal coherent
state formalisms construction of Fock space is required which can be achived by
introducing annihilation and creation operators in the following way (Kim, 1997).

â† = −i [η(t)5̂− S3η̇(t)8̂]
(9)

â = i [η∗(t)5̂− S3η̇∗(t)8̂].

Whereâ andâ† are obeying the following relations.

i
dâ†

dt
+ [â†, Ĥ ] = 0

(10)

i
dâ

dt
+ [â, Ĥ ] = 0.

Now form the usual commutation relation it follows that

S3(ηη̇∗ − η∗η̇) = i . (11)

The position and momentum operators are given by

8̂ = (ηâ+ η∗â†)
(12)

5̂ = S3(η̇â+ η̇∗â†).
The density matrix approach usually gives us a convenient method for incorporat-
ing finite temperature effects. The formalism of thermo field dynamics (Umezawa
et al., 1982) can be used to get the thermal counterparts of coherent state (cs) and
squeezed state (ss) (Shumaker, 1986). Based on these lines, thermal coherent states
and thermal squeezed states are defined (Kireevet al., 1989; Mann and Revzen,
1989). Here we consider single mode case only.

A thermal coherent state (tcs) is defined (Mann and Revzen, 1989) as

|tcs〉 = D(α)D(ᾱ) |0(β)〉 (13)
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where

D(α) = eαa†−α∗a
(14)

D(ᾱ) = eᾱā†−ᾱ∗ā

and

|0(β)〉 = e−i M |0, 0̄〉, M = −i θ (β)(a†ā† − aā). (15)

The density operator can be defined (Mann and Revzen, 1989) as

ρ(β;α)tcs= D†(α) e−βωa†a D(α) (16)

where β = 1/kT and ω the energy of the mode,T the temperature, andk
Boltzmann’s constant. The characteristic function (Fc) for a state is defined by

Fc(λλ
∗) ≡ 〈exp(λa† exp(−λ∗a)〉, (17)

where

〈A〉 ≡ trρA. (18)

λ andλ∗ are regarded as independent variables so that we have two parameters for
each mode. Therefore the characteristic function for single mode thermal coherent
stateFctcs is defined by

Fctcs(λλ
∗) = exp[− f (β)|λ|2+ λ∗α − λα∗] (19)

with

f (β) = 1

eβω − 1
. (20)

Similarly a thermal squeezed state (tss) is defined (Kireevet al., 1989) as

|tss〉 = S(ξ )S(ξ̄ )D(α)D(ᾱ) |0(β)〉 (21)

where

S(ξ ) = exp

[
ξa†

2 − ξ ∗a2

2

]
, ξ = r eiφ

(22)

S(ξ̄ ) = exp

[
ξ̄ ā†

2 − ξ̄ ∗ā2

2

]
, ξ̄ = r̄ ei φ̄

andD(α), D(ᾱ), and|0(β)〉 are given by (14) and (15), respectively.
The density matrix for thermal squeezed states is given by (Kireevet al.,

1989)

ρtss= D†(α)S†(ξ ) e−βa†aS(ξ )D(α) (23)
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and the characteristic function is

Fctss= exp

[
−|λ|2

(
sinhr coth

βω

2
+ f (β)

)
− coshr sinhr

2
coth

βω

2
(e−iφλ2+ eiφλ∗2)− λα∗ + λα

]
. (24)

We can write (21) by puttingα = ᾱ = 0 in analoge with zero temperature squeezed
state (Shumaker, 1986) as

|tsv〉 = S(ξ )S(ξ̄ ) |0(β)〉 (25)

and call as thermal squeezed vacuum (tsv). The corresponding density matrix is
given by

ρtsv = S†(ξ ) e−βa†aS(ξ ) (26)

and the characteristic function is

Fctsv= exp

[
−|λ|2

(
sinhr coth

βω

2
+ f (β)

)
− coshr sinhr

2
coth

βω

2
(e−iφλ2+ eiφλ∗2)

]
. (27)

Now expectation values ofa, a2, a†, anda†2 can be calculated in thermal coherent
state, thermal squeezed state, and thermal squeezed vacuum state formalisms by
applying their corresponding characteristic function in the following relations.〈

an
i

〉 = ∂nFc

∂λ∗ni |λi=λ∗t =0
(28)〈

a†ni

〉 = −∂nFc

∂λn
i |λi=λ∗i =0

Therefore the expectation values of5̂2 and8̂2 can be computed in thermal coherent
state by using (19) and (28) obtained as

〈5̂2〉tcs= S6(η̇2α2+ η̇∗2α∗2+ η̇η̇∗(2|α|2+ 2 f (β)+ 1))
(29)

〈8̂2〉tcs= η2α2+ η∗2α∗2+ ηη∗(2|α|2+ 2 f (β)+ 1).

Similarly in thermal squeezed state by using (24) and (28)

〈5̂2〉tss= S6

(
η̇2

(
α2− sinhr coshr

2
coth

βω

2
2eiφ

)
+ η̇∗2

(
α∗2− sinhr coshr

2
coth

βω

2
2e−iφ

)
+ η̇η̇∗

(
2 sinh2 r coth

βω

2
+ 2 f (β)+ 2|α|2+ 1

))
, (30)
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〈8̂2〉tss= η2

(
α2− sinhr coshr

2
coth

βω

2
2eiφ

)
+ η∗2

(
α∗2− sinhr coshr

2
coth

βω

2
2e−iφ

)
+ ηη∗

(
2 sinh2 r coth

βω

2
+ 2 f (β)+ 2|α|2+ 1

)
.

Therefore the scalar field can be represented in thermal coherent state and taking
this in to account the semiclassical equation (5) can be written as(

Ṡ

S

)2

+ k

S
= 8π

3S3

[(
1

2S3
S6η̇2+ S3m2

2
η2

)
α2+

(
1

2S3
S6η̇∗

2 + S3m2

2
η∗2
)
α∗2

+
(

1

2S3
S6η̇η̇∗ + S3m2

2
ηη∗

)
(2 f (β)+ 2|α|2+ 1)

]
. (31)

Since the expectation value of the position operator in thermal coherent state,
i.e. 〈tcs|8̂|tcs〉 = (ηα + η∗α∗) = 8cl and momentum operator, i.e.〈tcs|5̂|tcs〉 =
(η̇α + η̇∗α∗) = 5cl are yield the corresponding classical values (Kim, 1997), (31)
can be written as(

Ṡ

S

)2

+ k

S
= 8π

3

(
52

cl

2S6
+ m282

cl

2
+ Hth+ H0

)
(32)

where

Hth = f (β)(η̇η̇∗ +m2ηη∗) (33)

and

H0 = 1

2
(η̇η̇∗ +m2ηη∗) (34)

are respectively the finite temperature energy density and zero-point energy density
contribution terms.

Similarly the representation of the scalar field in thermal squeezed state yield
the semiclassical equation (5) as(

Ṡ

S

)2

+ k

S
= 8π

3S3

[(
1

2S3
S6η̇2+ S3m2

2
η2

)(
α2− sinhr coshr

2
coth

βω

2
2eiφ

)
+
(

1

2S3
S6η̇∗2+ S3m2

2
η∗2
)(
α∗2− sinhr coshr

2
coth

βω

2
2e−iφ

)
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+
(

1

2S3
S6η̇η̇∗ + S3m2

2
ηη∗

)(
2 sinh2 r coth

βω

2

+ 2 f (β)+ 2|α|2+ 1

)]
(35)

which can be written as(
Ṡ

S

)2

+ k

S
= 8π

3

(
52

cl

2S6
+ m282

cl

2
+ Hth+ Hq + H0

)
(36)

where

Hq = sinh2 r coth
βω

2
(η̇η̇∗ +m2ηη∗)

− sinhr coshr

2
coth

βω

2
(eiφ(η̇2+m2η2)+ e−iφ(η̇∗

2 +m2η∗)). (37)

Hth andH0 are given by (33) and (34), respectively.
Since the expectation value of8̂ and5̂ in thermal squeezed vacuum becomes

zero the semiclassical equation in thermal squeezed vacuum state formalism can
be written as (

Ṡ

S

)2

+ k

S
= 8π

3
(Hth+ Hq + H0) (38)

whereHth, H0, andHq are given by (33), (34), and (37), respectively.

3. CONCLUSIONS

We have examined the finite temperature effects in semiclassical gravity for
the FRW cosmological model by representing a minimal scalar field in thermal
coherent state and thermal squeezed state formalisms. The semiclassical Einstein
equation is found that its energy density is the sum of a classical term, a thermal
term and zero-point energy term in thermal coherent state formalism. In the case
of thermal squeezed state formalism the semiclassical equation is found that its
energy density can be written into a quantum term in addition to that of thermal
coherent state. While in thermal squeezed vacuum state the energy density for the
semiclassical equation is that of quantum term and thermal term puls zero-point
energy term. Whenr andφ are equal to 0 andT = 0, (38) reduce to vacuum state.
The vacuum state can be considered as a specific coherent state (Kim, 1997) with
8cl = 5cl = 0. Therefore comparing the energy density in the aformentioned vac-
uum state with the thermal squeezed vacuum state for the semiclassical equation
leads to the following facts that the nonzero contribution can arise from quantum
fluctuations around8 = 0 for thermal coherent state and additional quantum fluc-
tuation could be due to particle creation (Sureshet al., 1995) in thermal squeezed
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vacuum state. This is one stricking difference between the thermal cohernt state
and thermal squeezed state formalism representation of scalar field in semiclassi-
cal gravity. A common feature of finite temperature effect for both states can be
realised by the thermal contribution term to the energy density. Therefore we may
argue that if thermal squeezed state be a possible quantum state for scalar field in
an early universe where quantum phenomenon are expected to play a key role, can
give rise large quantum fluctuation via created particles and may lead many phys-
ical insight into early universe. As the universe expand the temperature become
reduced and therefore the correleation of temperature effect and thermal squeezed
state may loose. This is because the fact that the temperature and squeezing ef-
fect are strongly correlated in thermal squeezed state. Since thermal coherent state
contain both classical and thermal features and thermal squeezed states contain
both features of nonclassical and thermal properties, it seems that these states may
be much useful than their zero temperature counter parts.
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